
Force Platform Developer Guide

force platform developer guide

force platform developer guide serves as your essential roadmap to building powerful applications on

the Salesforce ecosystem. This comprehensive guide delves into the core concepts, essential tools,

and best practices for leveraging the Force.com platform, now known as the Salesforce Platform.

Whether you're a seasoned developer or embarking on your first Salesforce project, understanding the

intricacies of Apex, Visualforce, Lightning Web Components, and the underlying data model is crucial

for success. We’ll explore how to design robust data structures, implement complex business logic,

create intuitive user interfaces, and integrate with external systems, all within the secure and scalable

Salesforce environment. Get ready to unlock the full potential of the Salesforce Platform and build

transformative solutions.

Introduction to the Salesforce Platform

Understanding the Salesforce Platform Architecture

https://lakeworth.doodlebugs.com/pertama2-022/force-platform-developer-guide


Core Development Components

Apex: Server-Side Development

Visualforce: Declarative UI

Lightning Web Components (LWC): Modern UI Development

Salesforce APIs: Integration and Data Access

Data Modeling and Management

Objects, Fields, and Relationships

Data Security and Sharing

Data Import and Export

Building User Interfaces

Lightning App Builder

Custom Lightning Components

Mobile Development with Salesforce



Automation and Business Logic

Flows: Declarative Automation

Apex Triggers: Advanced Logic

Process Builder and Workflow Rules (Legacy)

Testing and Deployment

Unit Testing with Apex

Change Sets

Salesforce DX

Best Practices for Force Platform Development

Resources for Continued Learning

Navigating the Force Platform Developer Landscape

The Salesforce Platform, formerly widely referred to as the Force.com platform, offers a robust and

flexible environment for building custom business applications. This guide is designed to equip you

with the foundational knowledge and practical steps needed to become proficient in developing on this



influential cloud-based ecosystem. We will cover the essential building blocks, from understanding the

platform's unique architecture to mastering its diverse development tools and methodologies. Preparing

yourself with a solid grasp of these concepts is key to delivering high-quality, scalable, and

maintainable solutions that drive business value.

Understanding the Salesforce Platform Architecture

The Salesforce Platform is a multi-tenant, cloud-based architecture designed for scalability, security,

and performance. Its core is built upon a metadata-driven framework, allowing for extensive

customization without compromising the underlying platform integrity. Understanding this multi-tenant

nature is crucial, as it means you share resources with other customers while maintaining data

isolation and security. The platform’s robust infrastructure supports a wide array of services, including

a powerful database, a sophisticated application server, and extensive APIs, all managed by

Salesforce.

Multi-Tenancy and its Implications

Multi-tenancy is a cornerstone of the Salesforce platform. It enables multiple customers to share a

single instance of the software and its underlying infrastructure. For developers, this means adherence

to strict governor limits and efficient resource utilization is paramount. Code must be written to prevent

one tenant's operations from negatively impacting another. This architecture fosters cost-effectiveness

and allows Salesforce to deliver regular updates seamlessly across all users. As a developer, you

must always be mindful of these shared resources when designing your applications.

The Metadata-Driven Framework

Salesforce's metadata-driven approach is what makes it so adaptable. Instead of modifying core code,

developers customize the application by defining and manipulating metadata. This metadata describes

the structure of your data (objects, fields), the user interface, business logic, and security settings. This



separation of customization from core platform code ensures that your customizations are preserved

during platform upgrades. Learning to work with and understand this metadata is fundamental to

effective Force platform development.

Core Development Components

The Salesforce Platform provides a rich set of tools and languages for developers to build applications.

These components allow for everything from simple data manipulation to complex business process

automation and sophisticated user interface design. Mastering these core components is essential for

any aspiring Salesforce developer. Each component plays a distinct role, and understanding how they

work together is key to building effective solutions.

Apex: Server-Side Development

Apex is Salesforce's proprietary, strongly typed, object-oriented programming language. It is used to

write business logic, including complex validation rules, declarative automation, and custom operations

that go beyond the standard declarative capabilities. Apex code executes on the Salesforce servers

and integrates seamlessly with the platform's data model and services. Learning Apex is critical for

building advanced and highly customized applications on the Salesforce platform. Its syntax is similar

to Java, making it relatively accessible for developers familiar with object-oriented programming

principles.

Apex Classes and Triggers

Apex classes are reusable modules of code that encapsulate methods for performing specific tasks.

They are the backbone of complex logic and integration on the platform. Apex triggers are blocks of

code that execute automatically when a record is inserted, updated, deleted, or undeleted. Triggers are

commonly used to enforce complex business rules, perform auditing, or synchronize data across

objects. Understanding the order of execution for triggers and other system events is vital to prevent

unexpected behavior.



Governor Limits

As a server-side language executing in a multi-tenant environment, Apex is subject to governor limits.

These limits are in place to ensure that shared resources are used fairly and that no single Apex

transaction consumes excessive resources. Common governor limits include the number of SOQL

queries, DML statements, and CPU time. Developers must write efficient Apex code, bulkify

operations, and design their logic to stay within these limits to ensure their applications perform

reliably.

Visualforce: Declarative UI

Visualforce is Salesforce's component-based markup language used to build custom user interfaces for

the platform. It allows developers to create dynamic pages that interact with the Apex code and the

Salesforce data model. Visualforce pages can be rendered as standard web pages, embedded within

Salesforce, or used to build custom mobile applications. While Lightning Web Components are the

modern standard, understanding Visualforce is still valuable for maintaining existing applications or

when specific functionalities are best suited for it.

Visualforce Controllers and Extensions

Visualforce pages leverage controllers to interact with the Salesforce data and execute business logic.

Standard controllers provide basic record-level operations, while custom controllers and extensions

allow for more complex logic and data manipulation. These controllers act as the bridge between the

Visualforce markup and the Apex code, enabling dynamic data display and user interaction.

Lightning Web Components (LWC): Modern UI Development

Lightning Web Components (LWC) is Salesforce's modern framework for building client-side user

interfaces. Built on web standards, LWC offers improved performance, better developer experience,

and enhanced interoperability compared to older frameworks. It utilizes standard JavaScript, HTML,

and CSS, making it easier for web developers to transition to Salesforce development. LWC is the



recommended approach for building new user interfaces on the Salesforce platform.

Component Structure and Data Binding

LWC applications are built using modular components. Each component consists of an HTML

template, a JavaScript file for logic, and optionally a CSS file for styling. Data binding in LWC is

reactive, meaning that changes to the underlying data automatically update the UI. This declarative

approach simplifies the development of dynamic and interactive user interfaces.

Salesforce Lightning Design System (SLDS)

The Salesforce Lightning Design System (SLDS) provides a robust framework for building user

interfaces that are consistent with the Salesforce Lightning look and feel. SLDS offers pre-built CSS

classes and components that developers can leverage to create aesthetically pleasing and user-

friendly interfaces without needing to be CSS experts. Adhering to SLDS ensures that your custom

components feel like a natural extension of the Salesforce platform.

Salesforce APIs: Integration and Data Access

Salesforce provides a comprehensive set of APIs that allow external applications to interact with

Salesforce data and functionality. These APIs are crucial for integrating Salesforce with other systems,

building custom mobile apps, and automating data exchange. Understanding the various APIs

available enables developers to extend the reach of Salesforce beyond its standard user interface.

REST API

The Salesforce REST API provides a powerful way to interact with Salesforce data using standard

HTTP methods (GET, POST, PUT, DELETE). It’s a stateless, lightweight API that is ideal for mobile

applications, web services, and integrations. The REST API allows for querying, creating, updating,

and deleting records, as well as retrieving metadata and executing Apex code.



SOAP API

The Salesforce SOAP API is a standards-based web service that uses SOAP messages to interact

with Salesforce data and functionality. While more verbose than the REST API, it offers robust

transaction management and is suitable for enterprise-level integrations where strict adherence to

SOAP standards is required. The SOAP API also supports operations like querying, creating, updating,

and deleting records.

Bulk API

The Bulk API is optimized for processing large sets of data. It allows for asynchronous processing of

data operations, making it efficient for large-scale data loads and deletions. The Bulk API is particularly

useful for data migration projects or regular batch processing of records, as it can handle thousands or

even millions of records without hitting typical API limits.

Data Modeling and Management

A well-designed data model is the foundation of any successful Salesforce application. Understanding

how to structure objects, define fields, and establish relationships is critical for data integrity, efficient

querying, and scalable application performance. The platform offers extensive capabilities for

managing and securing your data.

Objects, Fields, and Relationships

In Salesforce, data is organized into objects, which are similar to database tables. Standard objects

(e.g., Account, Contact, Opportunity) are pre-built by Salesforce, while custom objects can be created

to store unique business data. Fields represent the individual data points within an object, analogous

to columns in a database. Relationships between objects (e.g., lookup, master-detail) are crucial for

linking related data and building a cohesive data architecture.



Standard Objects: Predefined objects like Accounts, Contacts, Leads, Opportunities.

Custom Objects: Objects created by administrators or developers to store unique data.

Fields: Data elements within objects (Text, Number, Date, Picklist, etc.).

Relationships: Link objects together (Lookup, Master-Detail, Many-to-Many).

Data Security and Sharing

Salesforce provides a robust and granular security model to control access to data. This includes

profiles, permission sets, roles, and sharing rules. Understanding how these elements interact is

essential to ensure that users only see the data they are authorized to access. The principle of least

privilege should guide your security configurations.

Organization-Wide Defaults (OWD)

OWD settings define the baseline access level for records a user does not own. Options include

Private, Public Read Only, and Public Read/Write. These settings establish the most restrictive sharing

model, which can then be opened up through other sharing mechanisms.

Role Hierarchy and Sharing Rules

The role hierarchy allows records to be shared up the management chain. Sharing rules, on the other

hand, are manual configurations that grant access to specific groups of users or roles based on record

ownership or criteria. Combining OWD, roles, and sharing rules creates a comprehensive access

control strategy.



Data Import and Export

Salesforce offers several tools for importing and exporting data, facilitating data migration, backups,

and integrations. The Data Import Wizard is suitable for smaller data sets, while Data Loader is a client

application for larger or more complex data operations. Understanding these tools is vital for managing

your Salesforce data effectively.

Data Import Wizard

The Data Import Wizard is a user-friendly tool accessible within the Salesforce setup interface. It

supports importing data into standard and custom objects, including de-duplication features. It's ideal

for importing up to 50,000 records and is a good starting point for new data loads.

Data Loader

Data Loader is a more powerful desktop application for administrators and developers. It can import,

export, and delete larger volumes of data (up to 5 million records). Data Loader allows for more control

over data mapping and can handle complex operations like updating existing records or inserting new

ones with greater efficiency.

Building User Interfaces

Creating intuitive and engaging user interfaces is key to user adoption and application success. The

Salesforce platform offers multiple avenues for UI development, from declarative tools to programmatic

approaches, allowing developers to craft experiences tailored to specific user needs.

Lightning App Builder

Lightning App Builder is a declarative tool that enables users to create custom pages for the

Salesforce mobile app and Lightning Experience. It uses a drag-and-drop interface, allowing users to

add standard components, custom Lightning components, and even Visualforce pages to build



dynamic layouts. This tool significantly reduces the need for custom code for many UI requirements.

Custom Lightning Components

For more complex UI requirements that cannot be met by standard components or the Lightning App

Builder, developers can build custom Lightning Web Components (LWC) or Aura components. These

components can be reused across multiple pages and applications, encapsulating specific functionality

and user interactions. Developing custom components allows for highly tailored user experiences.

Mobile Development with Salesforce

The Salesforce Mobile App provides a powerful platform for accessing Salesforce data and

functionality on the go. Developers can customize the mobile experience using the Lightning App

Builder, custom Lightning components, and by extending Apex logic. For more advanced mobile

scenarios, Salesforce offers tools like Mobile SDK, which enables the development of native iOS and

Android applications that integrate with Salesforce.

Automation and Business Logic

Automating business processes and implementing complex logic are core strengths of the Salesforce

Platform. Leveraging its automation tools and Apex allows organizations to streamline operations,

enforce business rules, and improve efficiency. Understanding the different automation options and

when to use them is crucial for effective Force platform development.

Flows: Declarative Automation

Salesforce Flow is a powerful declarative tool that allows users to automate complex business

processes without writing code. Flows can automate anything from simple data updates to complex

multi-step approvals. They offer a visual way to design and manage business processes, making them



accessible to a broader range of users and reducing reliance on developers for certain automation

tasks. Flow is rapidly becoming the preferred automation tool on the platform.

Record-Triggered Flows

Record-triggered flows automatically execute when a record is created, updated, or deleted. These

flows can perform actions before or after the record is saved to the database, making them versatile

for implementing complex business logic, data validation, and automated updates.

Screen Flows

Screen flows allow you to guide users through a series of screens to collect information or guide them

through a process. These are ideal for creating guided selling tools, data entry forms, or complex

configuration wizards within Salesforce.

Apex Triggers: Advanced Logic

As mentioned earlier, Apex triggers are essential for implementing complex business logic that cannot

be achieved with declarative automation. They execute in response to record-level events (insert,

update, delete, undelete) and can perform sophisticated operations, including calling Apex classes,

complex validation, and interacting with external systems. Proper trigger design and bulkification are

key to performance.

Process Builder and Workflow Rules (Legacy)

Process Builder and Workflow Rules are older declarative automation tools that are still present on the

platform. While Salesforce is transitioning its automation focus to Flow, understanding these tools is

still beneficial for maintaining existing applications or for simple automation tasks that might be easier

to configure with them. However, for new automation, Flow is generally recommended.



Testing and Deployment

Ensuring the quality and successful deployment of your applications is critical. Salesforce provides

robust tools and methodologies for testing your code, managing changes, and deploying them across

different environments. A well-defined testing and deployment strategy minimizes errors and ensures a

smooth release process.

Unit Testing with Apex

Apex unit tests are essential for verifying the functionality of your Apex code. Salesforce requires a

minimum code coverage percentage for Apex code to be deployed. Writing comprehensive unit tests

ensures that your code behaves as expected and helps prevent regressions when making future

changes. Apex tests are also used to define test data and simulate different scenarios.

Understanding Assertions and Test Data

Unit tests typically use assertions to check if expected outcomes match actual results. Creating

representative test data using `Test.loadData` or programmatically is crucial for covering various code

paths and edge cases. A good set of unit tests provides confidence in the code's reliability.

Change Sets

Change Sets are a deployment tool that allows you to move customizations between related

Salesforce organizations, such as from a sandbox to a production environment. They are a good

option for simpler deployments and are managed through the Salesforce Setup UI. However, change

sets can be cumbersome for complex or frequent deployments.

Salesforce DX

Salesforce DX (SFDX) is a modern, agile development methodology and toolset that transforms how



you develop on the Salesforce platform. SFDX provides a command-line interface (CLI), source-driven

development, and continuous integration/continuous delivery (CI/CD) capabilities. It streamlines the

entire development lifecycle, from scratch org creation to deployment, making it the preferred method

for professional Force platform development.

Source-Driven Development

SFDX emphasizes source-driven development, where your Salesforce metadata is stored in a version

control system (like Git). This allows for better collaboration, tracking of changes, and easier rollbacks.

Developing directly from a source control repository is a key aspect of the SFDX workflow.

Scratch Orgs and Dev Hub

Salesforce DX utilizes scratch orgs – temporary, configurable Salesforce environments that are ideal

for development and testing. A Dev Hub organization manages these scratch orgs. This approach

allows developers to work in isolated, clean environments, promoting a more efficient and reliable

development process.

Best Practices for Force Platform Development

Adhering to best practices ensures that your Salesforce applications are scalable, maintainable,

secure, and performant. Following established guidelines helps avoid common pitfalls and maximizes

the benefits of the Salesforce platform. These practices are built on years of experience and

community knowledge.

Bulkify your Apex code: Write Apex code that can handle multiple records at once to avoid

governor limits.

Use efficient SOQL queries: Select only the fields you need and utilize query optimization

techniques.



Minimize DML statements: Group DML operations to reduce the number of database calls.

Leverage declarative automation first: Utilize Flow, Process Builder, and Workflow Rules before

resorting to Apex.

Implement robust error handling: Use try-catch blocks in Apex and provide informative error

messages.

Adhere to coding standards: Maintain consistent naming conventions and code formatting for

readability.

Secure your applications: Follow Salesforce security best practices, including least privilege.

Write thorough unit tests: Aim for high code coverage and test all critical functionality.

Use Salesforce DX for development: Embrace modern tools for efficient and collaborative

development.

Stay updated with platform changes: Salesforce releases updates three times a year, so keep

your knowledge current.

Resources for Continued Learning

The Salesforce platform is constantly evolving, and continuous learning is key to staying effective.

Salesforce offers a wealth of resources to help developers deepen their knowledge and skills.

Exploring these resources will empower you to tackle increasingly complex challenges and build

innovative solutions.



Salesforce Trailhead: The official online learning platform for Salesforce, offering interactive

modules and trails for all skill levels.

Salesforce Developer Documentation: Comprehensive documentation covering all aspects of the

platform, including Apex, APIs, and Lightning.

Salesforce Developer Blog: Stay up-to-date with the latest news, tips, and insights from the

Salesforce developer community.

Salesforce Stack Exchange: A Q&A community where you can find answers to common

development questions and interact with other developers.

Salesforce Developer Forums: Engage with the Salesforce developer community to discuss

technical challenges and share knowledge.

Frequently Asked Questions

What are the primary benefits of using the Force.com platform for

custom application development?

The Force.com platform offers significant benefits including rapid development cycles, built-in

scalability and security, robust integration capabilities with other systems, and a rich ecosystem of pre-

built components and apps. Its declarative tools also lower the barrier to entry for citizen developers.

How does the Force.com platform handle data security and compliance

for custom applications?

Force.com provides a multi-layered security model including authentication, authorization (role-based

access control), field-level security, and encryption. It also adheres to various compliance standards



like GDPR, HIPAA, and SOC 2, making it suitable for sensitive data.

What are the key programming languages and technologies used by

Force.com developers?

The primary languages are Apex (a proprietary, Java-like object-oriented language) and Visualforce (a

tag-based markup language for creating UIs). JavaScript is extensively used for client-side interactivity,

and Lightning Web Components (LWC) utilize modern web standards like HTML, JavaScript, and CSS.

What are Lightning Web Components (LWC) and how do they differ

from older UI frameworks like Visualforce or Aura?

Lightning Web Components (LWC) is Salesforce's modern, standards-based component framework. It

offers better performance, reusability, and developer experience compared to Aura components. LWCs

leverage native browser JavaScript and CSS, making them more interoperable and easier to learn for

web developers.

How can I integrate custom Force.com applications with external

systems and APIs?

The Force.com platform offers several integration options: REST and SOAP APIs for real-time

integration, Apex callouts for making outbound web service requests, Platform Events for event-driven

communication, and tools like MuleSoft for more complex enterprise integrations.

What are the best practices for building scalable and performant Apex

code on the Force.com platform?

Key best practices include bulkifying Apex code to handle large data volumes efficiently, using SOQL

queries judiciously to avoid governor limits, minimizing the number of DML statements, employing

asynchronous processing (like @future or Queueable Apex) for long-running operations, and

optimizing database queries.



Where can I find resources and support for learning and

troubleshooting Force.com development?

Primary resources include the official Salesforce Developer Documentation (developer.salesforce.com),

the Trailhead learning platform for guided tutorials and modules, the Salesforce Stack Exchange for

community Q&A, and Salesforce developer forums for discussions and support.

Additional Resources

Here are 9 book titles related to Force.com development, adhering to your formatting requirements:

1. Force.com Fundamentals: Building Your First Cloud Application

This introductory guide takes you through the essential concepts of the Force.com platform, from

understanding its architecture to developing a basic, functional cloud application. It covers core

elements like objects, fields, layouts, and basic automation to get you started on your development

journey. You'll learn the foundational building blocks for creating robust solutions on the Salesforce

platform.

2. Advanced Force.com Apex Programming Techniques

Dive deep into the power of Apex, Force.com's proprietary programming language, with this

comprehensive resource. It explores advanced concepts such as triggers, classes, interfaces, and

governor limits, equipping you with the skills to write efficient and scalable code. The book offers best

practices and design patterns to tackle complex business requirements.

3. Force.com Integration Patterns and Best Practices

Unlock the potential of connecting your Force.com applications with external systems using this in-

depth guide. It covers various integration methods, including APIs, middleware, and web services,

providing practical examples and architectural considerations. Learn how to build seamless data flows

and maintain data integrity across your enterprise ecosystem.



4. Force.com Visualforce and Lightning Component Development

Master the art of creating dynamic and user-friendly interfaces on the Force.com platform with this

essential development book. It delves into Visualforce for classic development and the modern

Lightning Component Framework for building reusable, component-based UIs. You'll learn to craft

engaging user experiences that enhance productivity.

5. Force.com Data Modeling and Schema Design

This book provides a thorough understanding of how to design effective data models and schemas

within the Force.com environment. It explores relationships, data types, security models, and best

practices for optimizing data storage and retrieval. Learn to build a solid foundation for your

applications that supports scalability and data integrity.

6. Force.com Security and Access Control Strategies

Secure your Force.com applications and protect sensitive data with this critical guide to security best

practices. It covers user profiles, permission sets, sharing rules, and field-level security to implement

robust access control mechanisms. The book empowers you to build secure solutions that comply with

organizational policies.

7. Force.com Platform Administration and Customization

While focused on development, understanding the administrative aspects of Force.com is crucial. This

book bridges the gap, explaining how to leverage administrative tools to enhance and customize your

developer-built applications. Learn about workflows, process builder, and other declarative tools that

complement code.

8. Force.com Batch Apex and Asynchronous Processing

Handle large data volumes and complex background tasks efficiently with this guide to asynchronous

processing on Force.com. It focuses on Batch Apex, Queueable Apex, and Scheduled Apex, teaching

you how to design and implement scalable solutions for data manipulation and processing. Master the

techniques for optimizing performance and avoiding governor limits.

9. Force.com Deployment Strategies and DevOps on Salesforce



This book guides you through the essential processes of deploying your Force.com applications and

implementing DevOps principles within the Salesforce ecosystem. It covers version control, continuous

integration, testing strategies, and release management to ensure smooth and reliable deployments.

Learn to streamline your development lifecycle and deliver value efficiently.

Force Platform Developer Guide

Back to Home

https://lakeworth.doodlebugs.com

